
A Grid Simulation Framework to Study Advance Scheduling Strategies for 

Complex Workflow Applications 

 

Adan Hirales-Carbajal, Andrei Tchernykh 

Computer Science Department 

CICESE Research Center 

Ensenada, Baja California, Mexico 

e-mail: ahirales@uabc.mx, chernykh@cicese.mx 

Thomas Röblitz, Ramin Yahyapour 

IT und Medien Centrum & Fakultät für Informatik  

Technische Universität Dortmund 

Dortmund, Germany 

e-mail: thomas.roeblitz@udo.edu, 

ramin.yahyapour@.udo.edu

 

 
Abstract—Workflow scheduling in Grids becomes an 

important area as it allows users to process large scale 

problems in an atomic way. However, validating the 

performance of workflow scheduling strategies in real 

production environment cannot be feasibly carried out. The 

complexity of production systems, dynamicity of Grid 

execution environments, and the difficulty to reproduce 

experiments, make workflow scheduling production systems a 

complex research environment. Instead, this work is based on 

a trace driven simulator.  

This work presents workflow scheduling support as an 

extension to the Teikoku Grid Scheduling Framework (tGSF). 

tGSF was developed as a response for a standard compliant 

and trace based Grid scheduling simulation environment. 

Workflow scheduling is provided via a second layer of Grid 

scheduler, extensible to new workflow and parallel scheduling 

strategies. This work also includes a usage case scenario, which 

illustrates how this extension can be used for quantitative 

experimental study. 
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I.  INTRODUCTION (HEADING 1) 

A workflow developed to describe business processes 
and problems in commerce, science, and engineering is the 
“automation of a process, which involves the orchestration of 
a set of grid services, agents and actors that must be 
combined together to solve a problem or to define a new 
service” [1]. Workflows are predominantly characterized by 
aggregating data and functionality into independent atomic-
like jobs. 

Perhaps, the most primitive example of a workflow is a 
batch file. When submitted each job in the batch is executed 
one after the other, therefore precedence constraints are 
chain like. Contemporary workflows are conceptually 
modeled as Graphs or DAGs, when no cycles are present in 
the workflow. In production systems, workflows are 
generally modeled by means of a job description language 
for portability of descriptions. Some examples include 
XPDL, BPEL, and DAX [2-4]. 

Workflows are submitted as atomic jobs, failure of a job 
within the workflow compromises the execution. 
Nevertheless, many exception handling mechanisms have 
been proposed to deal with this problem [24-26]. In this 

work, no exception handling is supported. In the event an 
exception occurs, the workflow execution is terminated. 

Workflow scheduling is a process in which resources are 
allocated to workflows jobs. Common resources whose 
usage can be virtualized include processors, disk space, and 
network bandwidth. The workflow scheduler multiplexes 
virtual resources (virtual machines) so that concurrent access 
to shared resources is attained. 

Production systems with workflow scheduling support 
include Pegasus, DAGMan/Condor, and Karajan/Globus [5-
7]. However, validating the performance of workflow 
scheduling strategies in such infrastructures is complex and 
time consuming. To perform such a task, researchers often 
require access to resources, source code, and instrumentation 
mechanism. Furthermore, workload and resource utilization 
conditions must be reproducible, because validation is 
essentially a parameter-sweep application. 

Although many workflow scheduling production systems 
exist to enable computational and storage capabilities in a 
transparent and scalable way, it is difficult to use them for 
experimental research. Thus simulation is a feasible method 
for studying workflow scheduling problems. 

In this paper, we present an architecture and design 
features of a workflow and parallel job scheduling simulation 
framework developed as an extension to Teikoku Grid 
Scheduling Framework (tGSF). tGSF is a generic standard 
based parallel scheduling framework. It provides 
mechanisms for parallel job interchange between sites in a 
computational Grid. Site acceptance and distribution of jobs 
are subject to policies; queuing and scheduling strategies are 
configurable; provenance information is associated to jobs 
during their execution life cycle and optionally stored to 
permanent storage. It is based on the Standard Workload 
Format (SWF). tGSF is a flexible configurable and 
extensible parallel Grid scheduling framework that complies 
with standards and offers a controllable research 
environment. Teikoku version 0.1 is available from [10]. 

In this work, tGSF has been extended with the 
capabilities of: (1) scheduling workflows and parallel jobs at 
the Grid layer; (2) query real-time or stale site state 
information; (3) query job execution time estimates; and (4) 
monitoring/storing performance accounting data. With such 
functionality, tGSF users can perform performance 
evaluation studies that include scheduling of parallel and 



workflow jobs. The architectural design for supporting the 
previously mentioned functionality, is the contribution of this 
work. 

The paper is organized as follows. Section II presents 
general architecture features of tGSF. Section III gives 
notation and formally describes the scheduling problem. 
Section IV describes the added architectural features that 
support workflow and parallel job scheduling at the Grid 
layer. Section V illustrates the simulation environment. 
Section VI discusses related work. Conclusion and future 
work are presented in Section VII. 

II. THE TGSF GRID SCHEDULING FRAMEWORK 

The tGSF was developed to provision a simulation 
framework for Grid scheduling. It is a Java based application 
developed by the Grid Scheduling Architecture Research 
Group (GSA-RG) of the open Grid Forum and a research 
group of equal name within the CoreGrid [8]. tGSF uses, 
wherever possible, standards for workload representation, 
performance metrics, and the scheduling architecture [9]. It 
was initially designed for parallel job interchange between 
computational sites. It uses job acceptance, distribution, and 
location policies to achieve load balancing. tGSF is 
structured in the following four layers (see Fig.1): 

 Foundation layer is an event-driven kernel that 
manages global time and event dispatching. Timed 
events are registered and dispatched by the kernel. 
The run time environment allows carrying out real-
time, simulation, or debugging scheduling setups.  

 Commons layer provides an abstraction for modeling 
of jobs, metrics, and persistence. A job is an 
aggregation of a description, life cycle, and 
provenance information. The description holds static 
attributes that define job ownership, group 
membership, and resource requirements. The job-
cycle holds information that describes job current 
and historic states. Provenance stores the job 
execution path from the job released site to the 
location of the host that satisfied the resource 
request. Metrics provide mechanisms for evaluating 
job performance. Lastly, persistence provides 
mechanisms to access permanent storage, such as, 
relational data bases and files. 

 Site layer. Resource administration is performed at 
site layer by means of an abstract scheduler. 
Strategies are used to advice the scheduler of 
possible job assignments. The scheduler can evaluate 
multiple strategies and select the most appropriate 
one. Parallel job scheduling strategies such as easy 
backfilling and FCFS are used. This layer also 
provides data warehousing to facilitate retrieving 
resource state information, used by strategies to 
make job allocation decisions. 

 Grid layer. Previous version of tGSF does not 
provide Grid scheduling support. It enables job 
interchange between sites by means of acceptance, 
location, and distribution policies. The decision 
maker may be operated under different settings. In a 

centralized set-up, its responsibility is to accept jobs 
and delegate them to the local site scheduler. In a 
decentralized set-up, job delegation is also 
performed based on a distribution policy.  

 
A site functioning or role may be oriented on 

computational, data, or memory intensive tasks. Only 
computational sites are considered here. Computational sites 
provide processing capabilities to execute parallel jobs. A 
computational site is an ensemble of components from the 
commons, site, and Grid layer, for instance: an activity 
broker, parallel scheduler, job submission component, 
metrics, an information provider, and acceptance and 
distribution policies. 

Parallel jobs are submitted to computational sites via a 
local submission component or forwarded from an external 
site. Locally submitted jobs may be processed or delegated to 
other sites. The delegated job acceptance or denial is 
determined by local acceptance policies. 
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In this work, we extend tGSF scheduling capabilities by 

adding workflow and parallel job scheduling support at the 
Grid layer. A centralized grid scheduler is responsible for 
orchestrating job placement to computational sites in the 
Grid. Two levels of scheduling are distinguished, namely, 
site scheduling and grid scheduling (see Fig. 2). The Grid 
scheduler queues parallel jobs and jobs with broken 
precedence constraints. It also buffers workflow control and 
state information used during workflow execution. 

III. THE SCHEDULING PROBLEM 

We address an online scheduling problem, in which 𝑛 
jobs 𝐽1, 𝐽2,⋯ , 𝐽𝑛  must be scheduled to 𝑚  parallel machines 
𝑁1,𝑁2 ,⋯ ,𝑁𝑚  referred to as computational sites. 𝑚𝑖  denotes 

Figure 1.  tGSF architecture. Workflow scheduling support is provided at the 

Grid layer by means of the composite and independent job schedulers. 



the number of identical processors of machine 𝑁𝑖 . Machines 
are ordered in ascending order of their sizes, so that  𝑚1 ≤
𝑚1 ≤ ⋯ ≤ 𝑚𝑚 . 
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Figure 2.  tGSF new two layer scheduling architecture. 

 
Job 𝐽𝑗  can be a parallel rigid or composite workflow job. 

Each parallel job 𝐽𝑗  is described by the 4-tuple 

 𝑟𝑗 , 𝑠𝑖𝑧𝑒𝑗 , 𝑝𝑗 , 𝑝 𝑗 , with release time 𝑟𝑗 ≥ 0, size or degree of 

parallelism 1 ≤ 𝑠𝑖𝑧𝑒𝑗 ≤ 𝑚𝑚 , execution time 𝑝𝑗 , and user 

runtime estimate 𝑝 𝑗 .  
Each composite job 𝐽𝑗  is represented by a directed acyclic 

graph 𝐷𝐴𝐺𝑗 =  𝑉𝑗 ,𝐸𝑗  , were 𝑉𝑗 =  𝐽𝑘 , 𝑘 = 1⋯𝑣  is the set 

of rigid jobs with  𝑉𝑗  = 𝑣, 𝐸𝑗 =   𝐽𝑘 , 𝐽𝑙 | 𝐽𝑘 , 𝐽𝑙 ∈  𝑉𝑗   is the 

set of precedence constraints. It is described by the 4-tuple 

 𝑟𝑗 ,𝐷𝐴𝐺𝑗 , 𝑝𝑗 , 𝑝 𝑗   its release time 𝑟𝑗 ≥ 0, 𝑟𝑗 = 𝑚𝑖𝑛 𝐽𝑒𝑛𝑡𝑟𝑦   , 
𝐽𝑒𝑛𝑡𝑟𝑦  ∈ 𝑉𝑗  jobs with no predecessors, its execution time 

𝑝𝑗 =  𝑝𝑘
𝑣
𝑘=1 , and estimated processing time 𝑝 𝑗  =  𝑝 𝑘

𝑣
𝑘=1 . 

Jobs in 𝑉𝑗  are scheduled to different sites, co-allocation of a 

rigid jobs onto separate sites is not allowed. Hereafter, rigid 
and composite jobs are referred to as jobs. 

IV. GRID SCHEDULING SUPPORT 

A. General Aspects of Workflow Scheduling 

Site level schedulers in Teikoku receive jobs that arrive 
over time, and schedule them without knowledge of the 
future, so that there are no guarantees of producing optimal 
schedules. Therefore, tGSF falls under the online scheduling 
model. 

Based on the fact that numerous deterministic workflow 
scheduling strategies bare common functionality, we have 
procured the design of a loosely coupled workflow 
scheduling architecture. Static workflow –DAG- scheduling 
strategies generally employ three phases [11]: 

 

 Labeling phase prioritizes each job in the workflow. 
Priorities are later used to establish the order in 
which jobs are to be scheduled. Classical labeling 
strategies include: upper rank, downward rank, and 
as late as possible. 

 Job selection phase. Jobs are selected based on the 
objective of the selection criteria, higher or lower 

priority jobs are selected first and passed to the 
assignment phase.  

 Job assignment phase. An optimization function is 
used to determine the best location for job 
placement. Typical optimization functions include: 
earliest start time and absolute latest start time.  

 
These three phases have been rigorously used in many 

designs of static and dynamic DAG scheduling strategies 
[11-14]. In this work, prioritization, selection, and 
assignment phases are defined in an interface. Furthermore, 
phases are implemented as policies. For instance, 
prioritization phase policies can be downward rank, upper 
rank, as late as possible, or other. Such design, enables 
exploring different scheduling settings. To this writing, we 
have extended tGSF to support two workflow scheduling 
strategies, namely HEFT (Heterogeneous Earliest Finishing 
Time) and CPOP (Critical Path on Processor) [11]. 
Components that enable workflow support and their 
interactions are subject of the following section. 

B. Components for Workflow Scheduling 

The primary goals in the design of the proposed 
workflow scheduling environment are to provide an 
extensible, highly cohesive, and loosely coupled 
infrastructure. Extensibility is supported by using wherever 
possible interfaces or abstract classes that provides 
specializing functionality, such as scheduling policies, 
optimization functions and metrics, schedulers, and job 
administration brokers. High cohesion and loosely coupling 
are partially attained by making components functionality 
self contained, and providing mechanisms for processing 
shared data. This objective is achieved by abstracting each 
job’s control and state data into independent Job Control 
Blocks (JCB). Such a design principle is commonly used to 
model process and threads in modern operating systems [15, 
16]. 

Workflow scheduling support is based on the scheduling 
phases described in the previous section. It is an aggregation 
of specialized schedulers, strategies, information providers, 
and brokers that orchestrate scheduling of workflows. The 
following components enable workflow scheduling support: 

 

 Abstract Grid Broker: The Abstract Grid Broker 
(AGB) receives jobs from a grid submission 
component, and forwards them to a parallel job 
scheduler or to a workflow scheduler. Several Grid 
broker implementations are possible, for instance, a 
distributed, hierarchical, or centralized. Differences 
between Grid broker implementations may lie in the 
visibility of resources, interconnection topology, 
among other factors. A Centralized Grid Broker 
(CGB) with complete view of all computational sites 
in the Grid is designed.  



 Abstract Scheduler: The Abstract Scheduler (AS) 
manages jobs by applying a parallel job or workflow 
scheduling scheme. Two concrete schedulers are 
distinguished: Parallel Job Scheduler (PJS) and 
Workflow Scheduler (WS). WS processes workflow 
jobs by ranking independent jobs, ordering them 
based on a selection criterion, and determining job 
destinations. The preceding process is repeated as 
precedence constraints are broken.  

 Strategy: A strategy is an extensible interface used 
to define job assignment policies, for example, 
random, minimum parallel load, minimum lower 
bound, etc. Polices are discussed later in section 
IV.F.  

 Information system: The Information system (IS) 
provides a query interface for  status 
information of compute sites and jobs execution time 
estimates. Assignment policies may be used by some 
strategies to gather information for decision making 
purposes. Section IV.E describes the information 
system design.  

 Dispatcher. The dispatcher forwards jobs to the 
destination site determined by a strategy. 

 
The sequence of events performed during the 

collaboration of workflow scheduling components may not 
be unique, as workflow scheduling strategies may omit some 
steps of the scheduling scheme. Others may reevaluate 
values as the scheduling process progresses. This is the case 
of dynamic critical path workflow scheduling strategies. In 
spite of the differences in sequencing of events, we illustrate 
a general set of events for scheduling workflows in Figure 3 
and describe them next. 

 
1. The scheduling process is initiated, when jobs are 

submitted –offered- to the CGB via a grid 

submission component. Sessions are used to send 

one or more jobs as a single request. Session 

duration is bounded, if session torn down occurs 

before consuming all session jobs, the CGB does not 

schedule them. Note that the CGB is a concrete 

implementation of AGB. 

2. Upon reception of a workflow, jobs are pushed into 

the Composite Job Queue (CJQ). The CGB forwards 

the job to the PJS or the WS based on the job type.  

3. The WS manages the job by creating or updating a 

workflow JCB. Job management includes setting the 

workflow state, internal workflow jobs states, and 

storing accounting data. Afterward, a labeling policy 

is used to rank all workflow jobs. A selection policy 

criterion is used to select a set of independent jobs 

ordered according to an ordering policy. 

4. Jobs in the independent job set are processed based 

on their relative ordering. The WS schedules each 

job by calling an Assignment Strategy (AS) to 

determine which site will host a given job. Note that 

one or more assignment strategy can be used.  

5. During the execution of the strategy the Grid 

Information Broker (GIB) polls job execution time 

estimates (i.e. earliest start time, earliest finishing 

time, etc.) or site status information (i.e. number of 

waiting jobs, total running jobs, number of 

resources, etc.). Ultimately, the strategy selects a 

destination site and adds localization information to 

the JCB.  

6. As job assignment is determined, the WS pushes 

jobs into the Independent Job Queue (IJQ), and 

creates a Job Queued Event (JQE) for the job.  

7. On the occurrence of a JQE event, the PJS retrieves 

–pop- localization information from the IJQ and 

calls the dispatcher. 

8. The dispatcher adds provenance information to the 
job and dispatches it to its destination site. 

 
In tGSF, the policies and strategies referenced in steps 4 

to 6 are defined in an ASCII text based configuration file. 
They are dynamically loaded during simulation runtime. 

C. Parallel Job Scheduling 

In order to define a suitable scheduling methodology, the 
following model restrictions are considered: A 
computational site schedule is only accessible to its local 
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Figure 3. Parallel and composite job tGSF extended Grid scheduling support. 



scheduler. The grid scheduler does not have access to the 
computational site schedules, it can only request state data or 
job execution time estimates. Estimates do not guarantee 
resource availability, nor that reservations performed. 

The parallel job scheduling is thus straightforward. Given 
a parallel or independent job an assignment policy is used to 
evaluate the candidacy of computational sites. First, a subset 
of admissible sites is built by selecting computational sites 
that can fulfill a given job resource requirements. The 
candidate site is selected according to the optimization 
criterion of the assignment strategy. Assignment strategies 
are discussed in Section IV.F. Once the target site is 
determined, the job is sent to the computational site. 

D. The Workflow Model 

The original version of tGSF models parallel jobs using 
the Standard Workload Format (SWF) with chain support 
[17]. In this work, we extend tGSF abstract job model so that 
workflows can be scheduled at the Grid layer. We added four 
new attributes to the existing format, namely: composite job 
ID, composite job type, vector of successor IDs, and a vector 
of predecessor IDs. Hereon, we use the term workflow or 
composite job interchangeably to refer to precedence 
constraint jobs. 

Composite jobs are modeled by Directed Acyclic Graphs 
(DAG). It is composed by a set of SWF jobs and a set of 
precedence constrains stored in a hypergraph data type [18]. 
Such a data type can be used to model jobs with directed, 
undirected, cyclic, forest, sparse, or other graph properties. 

E. Providing Information to Strategies 

Scheduling strategies may require accounting data or job 
execution estimates for decision-making purposes. In 

Teikoku, a Grid information component provides services 
for consulting resource availability, state, and architectural 
characteristics. Its design is based on the Grid laboratory 
Uniform Environment (GLUE) schema [19]. 

Teikoku’s Grid information component is composed by a 
Grid Information Broker (GIB) and the Site Information 
Broker (SIB). The GIB provides services that enable 
sampling data from one or more SIB’s, whereas SIB 
retrieves information from local resources.  

State and accounting data are stored in a Compute Site 
Information data structure. tGSF version 0.1 only supports 
CSI, all do the architecture is extensible so that other 
resources can be included. State data can accumulate at SIB 
brokers, therefore becoming stale, or it can be sampled with 
request.  Stale state data is refreshed at user given discrete 
time frames.  

CSI state data hold capacity bounds and accounting 
information. The first one retrieves quotas such as maximum 
number of jobs, running jobs, and waiting jobs. Accounting 
data provide load condition information such as total number 
of executed jobs, running jobs, waiting jobs, etc.  

A job execution estimate gives a prediction assuming a 
job is placed at a given computational site. SIB provided job 
execution estimates include earliest start time and earliest 
finishing time.  

The static diagram of the grid information component is 
illustrated in Fig. 4. Concrete implementations for the site 
information broker and grid information broker are given by 
Impl suffix named classes. 

F. Parallel Job Allocation Strategies 

The parallel job Grid scheduling strategies proposed in 
[20] have been implemented. Tchernykh et al. classified job 

TABLE I 

RIGID PARALLEL JOB ALLOCATION STRATEGIES 

Level Available information Allocation criteria Heuristic 

0 The number of machines and their size 

are known  

Rand, selects a machine randomly 
 

1 In addition to information in level 0, the 

number of jobs pending execution at 

each site is known  

Min_lp, Selects the site with minimum processor load  

𝑚𝑖𝑛  
𝑛𝑖
𝑚𝑖

  

2 In addition to information in level 1, the 

degree of parallelism of each task is 

used  

Min_pl, selects the site with minimum parallel load. 

Where 𝑔 𝐽𝑘 = 𝑀𝑖  denotes that job 𝐽𝑘was assigned to 

machine 𝑀𝑖  
𝑚𝑖𝑛   

𝑠𝑖𝑧𝑒𝑘
𝑚𝑖

𝑔 𝐽𝑘 =𝑀𝑖

  

3 In addition to information in level 2, 
clairvoyant scheduling is performed by 

using job estimated execution times.  

Min_lb, selects the site with minimum work per 
processor  

 
𝑚𝑖𝑛   

𝑠𝑖𝑧𝑒𝑘 ∙ 𝑝 𝑘
𝑚𝑖

𝑔 𝐽𝑘 =𝑀𝑖

  

4 In addition to information in level 3,all 

site scheduled are known  

Min_ct, selects the site with minimum completion 

time. Where 𝐶𝑚𝑎𝑥
𝑖 = 𝑚𝑎𝑥𝑔 𝐽𝑘 =𝑀𝑖

 𝐶𝑘
𝑖  , and 𝐶𝑘

𝑖  is the 

finishing time of job 𝐽𝑘  

𝑚𝑖𝑛 𝐶𝑚𝑎𝑥
𝑖   

  Min_wct, selects the site with minimum weighted 
completion time  𝑚𝑖𝑛   𝑠𝑖𝑧𝑒𝑘 ∙ 𝐶𝑘

𝑖

𝑔 𝐽𝑘 =𝑀𝑖

  

  Min_wt, selects the site with minimum job waiting 

time. If 𝑛𝑖  is zero 𝑛𝑖  is set to 1 𝑚𝑖𝑛   
𝐶𝑘
𝑖 − 𝑟𝑘 − 𝑝 𝑘

𝑛𝑖
𝑔 𝐽𝑘 =𝑀𝑖

  

  Min_wwt, selects the site with minimum weighted 
completion time. The weight is the size of the job  𝑚𝑖𝑛   

 𝐶𝑘
𝑖 − 𝑟𝑘 − 𝑝 𝑘 ∗ 𝑠𝑖𝑧𝑒𝑘

𝑛𝑖
𝑔 𝐽𝑘 =𝑀𝑖

  

  Min_u, selects the site with minimum overall 

utilization. Were 𝑊𝑡𝑜𝑡𝑎𝑙
𝑖 =  𝑠𝑖𝑧𝑒𝑘 ∙𝑔 𝐽𝑘 =𝑀𝑖

𝑝𝑘  is the 

total work performed by machine 𝑀𝑖  

𝑚𝑖𝑛  
𝑊𝑡𝑜𝑡𝑎𝑙

𝑖

𝐶𝑚𝑎𝑥
𝑖 ∙ 𝑚𝑖

  

  Min st, selects the site with minimum job start time 𝑚𝑖𝑛 𝐶𝑗
𝑖 − 𝑟𝑗   

 



allocation strategies based on the amount of information 
required for decision making. Four levels are distinguished, 
strategies of level 1, 2, and 3 use site status information, 
while strategies of level 4 require job execution time 
estimates. Table I lists parallel job allocation strategies, 
implemented in the new Grid scheduling framework. 

Level 1 throughout level 3 strategies, use the GIB to 
query site status information. Status information is used by 
assignment strategies to select a target computational site 
that will host a given job. Level 4 strategies use the GIB to 
poll job completion times 𝐶𝑗 . Each computational site 𝑖 that 

can host a given job 𝑗 forwards 𝐶𝑗
𝑖  to the GIB.  

Providing job completion time estimates is expensive, for 
it may require creating a schedule at each queried site. 
Furthermore, estimates do not guarantee that computational 
resources are reserved, nor that the validity of estimates will 
hold once jobs has been allocated.    

G. Performance Metrics 

Performance metrics are used to evaluate the 
performance of the Grid. Performance evaluation is 
conducted after the termination of an event, normally, after a 
job completion event or workflow completion event. The 
performance may also be evaluated during a pre-processing, 
processing, and post-processing phase. tGSF ver. 0.1 
provides support for the evaluation of the average response 
time, average slowdown, average wait time, average 
weighted response time, average weighted slowdown, and 
average weighted wait time at the site layer. 

Current parallel job scheduling objectives are 
summarized in Table II. Parallel job scheduling objectives 
can be found in classical scheduling theory sources [21,22], 
workflow scheduling objectives speedup and scheduling 
length ratio have been used in [11,13]. Workflow scheduling 
objectives such as waiting time, slowdown, turnaround time, 

and their weighted and bounded versions are proposed in this 
work. 

Performance metrics are classified as user centric and 
system centric. Mean waiting time is a system centric metric, 
the shorter waiting time the faster job execution begins. A 
parallel job 𝑗 can be weighted by its processing time 𝑝𝑗 , job 

size 𝑠𝑖𝑧𝑒𝑗 , or resource consumption  𝑝𝑗 . 𝑠𝑖𝑧𝑒𝑗  . Following 

Schwiegelshohn et al. [23] this ensures that neither splitting 
nor combination of jobs can influence the performance 
objective. Hence, job 𝑗  weight is given by 𝑤𝑒𝑖𝑔ℎ𝑡𝑗 =

 𝑝𝑗 , 𝑠𝑖𝑧𝑒𝑗 , 𝑝𝑗 𝑠𝑖𝑧𝑒𝑗  . A composite job is weighted by its 

processing time 𝑝𝑘 =  𝑝𝑗𝑇𝑗∈𝑉𝑘
, job size 𝑠𝑖𝑧𝑒𝑘 =

 𝑠𝑖𝑧𝑒𝑗𝑇𝑗∈𝑉𝑘
, or resource consumption  𝑝𝑘𝑠𝑖𝑧𝑒𝑘 . 

Composite job makespan is  𝐶𝑃𝑚𝑖𝑛  + 𝐴𝑆𝑇𝑘 . The 
Absolute Start Time (ASTk)  of a composite job 𝑘  is the 
minimum start time of job 𝑘 on all computational sites. The 
critical path  𝐶𝑃𝑚𝑖𝑛   is the sum of the minimum processing 
costs of jobs on the critical path. 

V. THE SIMULATION ENVIRONMENT 

In tGSF version 0.1, the simulation environment is setup 
by defining a set of sites and their corresponding properties 
in a Java properties file. Properties are used to define: the 
number of available resources, session life time, queuing 
policy, site information broker caching life time, and a set of 
performance objectives. Properties are set by initiating tGSF 
system constants, such as:  numberOfProvidedResources, 
informationBroker.class, etc. System constants can be found 
in tGSF package API documentation [8].  

A site can be configured to function as computational site 
or as a centralized grid scheduler, this is performed by 
initiating the activityBroker.class or the 
gridActivityBroker.class properties. Only one grid activity 
broker can be set, since the implementation of the Grid 

TABLE II 
GRID LAYER PARALLEL JOB AND WORKFLOW PERFORMANCE OBJECTIVES  

Level Metric Parallel Workflow 

1 Make-span  𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥 𝑐𝑗 | 𝑇𝑗 ∈ 𝑇  𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥 𝑐𝑗 | 𝑇𝑗 ∈ 𝑉𝑘 , per workflow 

2 Waiting time  𝑡𝑤𝑗 = 𝑐𝑗 − 𝑝𝑗 − 𝑟𝑗
 

𝑡𝑤𝑘 = max𝑇𝑗∈𝑉𝑘 𝑐𝑗 − 𝑝𝑗
 𝑉𝑘  

𝑗=1 − min𝑇𝑗∈𝑉𝑘
𝑟𝑗 , per workflow 

3 Average waiting time  
𝑡𝑤   =

1

𝑛
 𝑡𝑤𝑗

𝑛

𝑗=1

 
𝑡𝑤   =

1

𝑤
 𝑡𝑤𝑘
𝑤
𝑘=1 , where 𝑤 is the total number of composite 

jobs 

4 Average weighted 

waiting time  𝑡𝑤   =
 𝑤𝑒𝑖𝑔ℎ𝑡𝑗 ∙
𝑛
𝑗=1 𝑡𝑤𝑗
 𝑤𝑒𝑖𝑔ℎ𝑡𝑗
𝑛
𝑗=1

 
𝑡𝑤   =

 𝑤𝑒𝑖𝑔ℎ𝑡𝑘 ∙
𝑤
𝑘=1 𝑡𝑤𝑘

 𝑤𝑒𝑖𝑔ℎ𝑡𝑘
𝑤
𝑘=1

 

5 Slowdown 
𝑆𝐷 =

1

𝑛
 

𝑝𝑗 + 𝑡𝑤𝑗

𝑝𝑗

𝑛

𝑗=1

 𝑆𝐷 =
1

𝑤
 𝑆𝐷𝑘
𝑤
𝑘=1  were 𝑆𝐷𝑘 =

1

 𝑉𝑘  
 

𝑝𝑗+𝑡𝑤 𝑗

𝑝𝑗
𝑇𝑗∈𝑉𝑘

 

6 Bounded slowdown 
𝑆𝐷𝑏 =

1

𝑛
 

𝑚𝑎𝑥 10, 𝑝𝑗  + 𝑡𝑤𝑗

𝑚𝑎𝑥 10,𝑝𝑗  

𝑛

𝑗=1

 𝑆𝐷𝑏 =
1

𝑤
 𝑆𝐷𝑘
𝑤
𝑘=1  were  𝑆𝐷𝑘 =

1

 𝑉𝑘  
 

𝑚𝑎𝑥  10,𝑝𝑗  +𝑡𝑤 𝑗

𝑚𝑎𝑥  10,𝑝𝑗  

 𝑉𝑘  

𝑗=1  

7 Turnaround time 
𝑇𝐴 =

1

𝑛
  𝑐𝑗 − 𝑟𝑗  

𝑛

𝑗=1

 
𝑡𝑟𝑘 = 𝑚𝑎𝑥 𝑐𝑗  −𝑚𝑖𝑛 𝑟𝑖  | 𝑇𝑗 ,𝑇𝑖 ∈ 𝑉𝑘  

𝑇𝐴 =
1

𝑤
 𝑡𝑟𝑘

𝑤

𝑘=1

 

8 Weighted turnaround 

time 𝑇𝐴𝑤𝑒𝑖𝑔 ℎ𝑡 =
1

𝑛
  𝑐𝑗 − 𝑟𝑗  

𝑛

𝑗=1

∙  𝑤𝑒𝑖𝑔ℎ𝑡𝑗  𝑇𝐴𝑤 =
1

𝑤
  𝑡𝑟𝑘 ∙  𝑤𝑒𝑖𝑔ℎ𝑡𝑘 

𝑤

𝑘=1

 

9 Speedup  
𝑆𝑝𝑒𝑒𝑑𝑈𝑝𝑘 =

 𝑝𝑗𝑇𝑗∈𝑉𝑘

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛𝑘
 

10 Schedule length ration Selects the site with minimum start time 
𝑆𝑅𝐿𝑘 =

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛𝑘
 𝑝𝑗𝑇𝑗∈𝑉𝑘

 

 



activity broker is centralized. 
A single computational site and centralized Grid 

scheduler site Java properties file configuration excerpt is 
illustrated in the following pseudo code. Only key 
configuration features are presented. Documentation of tGSF 
version 0.1 Java properties can be found in [8]. 

 
 

# Site 1 runtime information and properties 
# Runtime information 

runtime.workloadSource.id = <id1> 

runtime.< id1>.associatedSite.ref = site1 
runtime.< id1>.url = file:/C:/<workload file>.swf 

# Site 1 properties 

sites.<id1>.numberOfProvidedResources = 1 
sites.< id1>.submissioncomponent.sessionlifetime = 100 

# Activity Broker 

sites.<id1>.gridActivityBroker.class  = ... CentralizedGridActivityBroker 

# Grid information server  

sites.<id1>.gridInformationBroker.class =... GridInformationBrokerImpl 

# Composite job strategy 

sites.< id1>.grid.composite.strategy.class = ... HEFT 

# Rigid job strategy 

sites.<id1>.grid.rigid.strategy.class =  …Rand 

# Optimization function 

sites.< id1>.registeredMetric.ref = bounded_slowdown 

 

#Site 2 runtime information and properties 
# Runtime information 

runtime.workloadSource.id = <id2> 

runtime.< id2>.associatedSite.ref = site2 

runtime. <id2>.url = file:/C:/<workload file>.swf 

# Site2 properties 

sites.<id2>.numberOfProvidedResources = 100 

sites.<id2>.localsubmissioncomponent.sessionlifetime = 100 

# Activity Broker 

sites.<id-2>.activitybroker.class = …StandardActivityBroker 

# Information broker 

sites.<id2>.informationBroker.class = … SiteInformationBrokerImpl 

sites.<id2>.informationBroker.refreshRate = -1 

… 

# Acceptance policy 

sites.<id2>.activitybroker.acceptancepolicy.class = …     

 StandardAcceptancePolicy 

# Scheduler and scheduling policy 

sites.<id2>.scheduler.class =…ParallelMachineScheduler 

sites.<id2>.scheduler.localstrategy.class = …FCFSStrategy 

# Queue policy 

sites.<id2>.scheduler.localqueuecomparator.class = … 

NaturalOrderComparator 
sites.<id2>.scheduler.localqueuecomparator.ordering = ascending 

# Metrics 

sites.<id2>.registeredMetric.ref = art 

 
Two brokers are defined, site 1 role is set as a grid 

activity broker (CentralizedGridActivityBroker) and site 2 
role is set as a computational site (StandardActivityBroker). 
Workloads are associated to each site by setting the url 
property, for example, site 1 workload is runtime.site1.url = 
file:/C:/gridWorkload.swf. The number of processors of a 
site is defined by the property numberOfProvidedResources. 
Site 2 hosts 100 processors. 

Recall that the information system is used to provide 
strategies state or job execution estimates. Site information 
broker refresh rate informationBroker.refreshRate. A value 
of -1 disables caching state data, it ensures that sampling is 

always performed. State data become stale if they are 
buffered more than a predefine amount of time set by the 
informationBroker.refreshRate to a positive integer value 
greater than one (milliseconds). A value of 600,000 indicates 
that information queries within a 10 minute time frame.   

The centralized Grid scheduler scheduling policies are set 
by initiating the grid.composite.strategy property to HEFT, 
for workflow scheduling support, and the grid.rigid.strategy 
property to Rand, for parallel job scheduling support.  

Computational sites may perform load balancing of 
locally submitted jobs, by setting the transfer, location, and 
distribution policies properties. This feature may be used to 
create dynamicity at site level scheduling layer, or may be 
disable so that once a job is assigned to a computational site, 
it cannot be delegated to others sites.  

VI. RELATED WORK 

OPTORSIM is a Java based simulator developed as part 
of the European DataGrid project. It aims to optimize the 
scheduling process for highly intensive computation and data 
Grids. OPTORSIM scheduling strategies include: random; 
access control which optimizes job allocation based on the 
time needed to access all files required by the job; queue 
size; and queue access cost which considers the combine 
access cost of all jobs in the queue. Replication optimization 
criterias include: no replication; replication based on the 
LRU (Least Recently Used) and LFU (Least Frequently 
Used) algorithms; and an auction based strategy that use the 
binomial economic model and the Zipf economic model for 
negotiating file replication. OPTORSIM provides time-based 
and event-based simulations [27]. 

Xavantes is a distributed process and workflow execution 
context based on Java-RMI. It provides a programming 
model based on BEPL (Business Process Execution 
Language) used to define process elements and precedence 
constraints. Two workflow scheduling strategies are 
supported: static PHC (Path Clustering Heuristic) and 
dynamic PCH.  Computation and communication estimates 
are used [13]. 

VII. CONCLUSIONS AND FUTURE WORK 

This work presented tGSF extension for workflow and 
parallel job Grid scheduling support, provided via a second 
layer of scheduler with parallel job strategies, workflow 
strategies, and metric extensibility. Workflow scheduling 
support is loosely coupled, so that job labeling, selection, and 
assignment strategies are processed independently. It allows 
the study of different workflow scheduling settings. To 
promote the simulator utilization in the scientific community, 
an example of the simulation setup was presented.  

This work is an on process work. The Teikoku research 
community entails many research branches. Our research 
branch dealt with the study of workflow and parallel job 
scheduling strategies in an execution context that 
experiences resource unavailability.  In future work, we plan 
to develop strategies to evaluate resource availability 
conditions in the Grid, and use such information to schedule 
workflows predictably. 
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