
A Grid Simulation Framework to Study Advance Scheduling Strategies for

Complex Workflow Applications

Adan Hirales-Carbajal, Andrei Tchernykh

Computer Science Department

CICESE Research Center

Ensenada, Baja California, Mexico

e-mail: ahirales@uabc.mx, chernykh@cicese.mx

Thomas Röblitz, Ramin Yahyapour

IT und Medien Centrum & Fakultät für Informatik

Technische Universität Dortmund

Dortmund, Germany

e-mail: thomas.roeblitz@udo.edu,

ramin.yahyapour@.udo.edu

Abstract—Workflow scheduling in Grids becomes an

important area as it allows users to process large scale

problems in an atomic way. However, validating the

performance of workflow scheduling strategies in real

production environment cannot be feasibly carried out. The

complexity of production systems, dynamicity of Grid

execution environments, and the difficulty to reproduce

experiments, make workflow scheduling production systems a

complex research environment. Instead, this work is based on

a trace driven simulator.

This work presents workflow scheduling support as an

extension to the Teikoku Grid Scheduling Framework (tGSF).

tGSF was developed as a response for a standard compliant

and trace based Grid scheduling simulation environment.

Workflow scheduling is provided via a second layer of Grid

scheduler, extensible to new workflow and parallel scheduling

strategies. This work also includes a usage case scenario, which

illustrates how this extension can be used for quantitative

experimental study.

Keywords: Grid computing, workflow scheduling, scheduling

I. INTRODUCTION (HEADING 1)

A workflow developed to describe business processes
and problems in commerce, science, and engineering is the
“automation of a process, which involves the orchestration of
a set of grid services, agents and actors that must be
combined together to solve a problem or to define a new
service” [1]. Workflows are predominantly characterized by
aggregating data and functionality into independent atomic-
like jobs.

Perhaps, the most primitive example of a workflow is a
batch file. When submitted each job in the batch is executed
one after the other, therefore precedence constraints are
chain like. Contemporary workflows are conceptually
modeled as Graphs or DAGs, when no cycles are present in
the workflow. In production systems, workflows are
generally modeled by means of a job description language
for portability of descriptions. Some examples include
XPDL, BPEL, and DAX [2-4].

Workflows are submitted as atomic jobs, failure of a job
within the workflow compromises the execution.
Nevertheless, many exception handling mechanisms have
been proposed to deal with this problem [24-26]. In this

work, no exception handling is supported. In the event an
exception occurs, the workflow execution is terminated.

Workflow scheduling is a process in which resources are
allocated to workflows jobs. Common resources whose
usage can be virtualized include processors, disk space, and
network bandwidth. The workflow scheduler multiplexes
virtual resources (virtual machines) so that concurrent access
to shared resources is attained.

Production systems with workflow scheduling support
include Pegasus, DAGMan/Condor, and Karajan/Globus [5-
7]. However, validating the performance of workflow
scheduling strategies in such infrastructures is complex and
time consuming. To perform such a task, researchers often
require access to resources, source code, and instrumentation
mechanism. Furthermore, workload and resource utilization
conditions must be reproducible, because validation is
essentially a parameter-sweep application.

Although many workflow scheduling production systems
exist to enable computational and storage capabilities in a
transparent and scalable way, it is difficult to use them for
experimental research. Thus simulation is a feasible method
for studying workflow scheduling problems.

In this paper, we present an architecture and design
features of a workflow and parallel job scheduling simulation
framework developed as an extension to Teikoku Grid
Scheduling Framework (tGSF). tGSF is a generic standard
based parallel scheduling framework. It provides
mechanisms for parallel job interchange between sites in a
computational Grid. Site acceptance and distribution of jobs
are subject to policies; queuing and scheduling strategies are
configurable; provenance information is associated to jobs
during their execution life cycle and optionally stored to
permanent storage. It is based on the Standard Workload
Format (SWF). tGSF is a flexible configurable and
extensible parallel Grid scheduling framework that complies
with standards and offers a controllable research
environment. Teikoku version 0.1 is available from [10].

In this work, tGSF has been extended with the
capabilities of: (1) scheduling workflows and parallel jobs at
the Grid layer; (2) query real-time or stale site state
information; (3) query job execution time estimates; and (4)
monitoring/storing performance accounting data. With such
functionality, tGSF users can perform performance
evaluation studies that include scheduling of parallel and

workflow jobs. The architectural design for supporting the
previously mentioned functionality, is the contribution of this
work.

The paper is organized as follows. Section II presents
general architecture features of tGSF. Section III gives
notation and formally describes the scheduling problem.
Section IV describes the added architectural features that
support workflow and parallel job scheduling at the Grid
layer. Section V illustrates the simulation environment.
Section VI discusses related work. Conclusion and future
work are presented in Section VII.

II. THE TGSF GRID SCHEDULING FRAMEWORK

The tGSF was developed to provision a simulation
framework for Grid scheduling. It is a Java based application
developed by the Grid Scheduling Architecture Research
Group (GSA-RG) of the open Grid Forum and a research
group of equal name within the CoreGrid [8]. tGSF uses,
wherever possible, standards for workload representation,
performance metrics, and the scheduling architecture [9]. It
was initially designed for parallel job interchange between
computational sites. It uses job acceptance, distribution, and
location policies to achieve load balancing. tGSF is
structured in the following four layers (see Fig.1):

 Foundation layer is an event-driven kernel that
manages global time and event dispatching. Timed
events are registered and dispatched by the kernel.
The run time environment allows carrying out real-
time, simulation, or debugging scheduling setups.

 Commons layer provides an abstraction for modeling
of jobs, metrics, and persistence. A job is an
aggregation of a description, life cycle, and
provenance information. The description holds static
attributes that define job ownership, group
membership, and resource requirements. The job-
cycle holds information that describes job current
and historic states. Provenance stores the job
execution path from the job released site to the
location of the host that satisfied the resource
request. Metrics provide mechanisms for evaluating
job performance. Lastly, persistence provides
mechanisms to access permanent storage, such as,
relational data bases and files.

 Site layer. Resource administration is performed at
site layer by means of an abstract scheduler.
Strategies are used to advice the scheduler of
possible job assignments. The scheduler can evaluate
multiple strategies and select the most appropriate
one. Parallel job scheduling strategies such as easy
backfilling and FCFS are used. This layer also
provides data warehousing to facilitate retrieving
resource state information, used by strategies to
make job allocation decisions.

 Grid layer. Previous version of tGSF does not
provide Grid scheduling support. It enables job
interchange between sites by means of acceptance,
location, and distribution policies. The decision
maker may be operated under different settings. In a

centralized set-up, its responsibility is to accept jobs
and delegate them to the local site scheduler. In a
decentralized set-up, job delegation is also
performed based on a distribution policy.

A site functioning or role may be oriented on

computational, data, or memory intensive tasks. Only
computational sites are considered here. Computational sites
provide processing capabilities to execute parallel jobs. A
computational site is an ensemble of components from the
commons, site, and Grid layer, for instance: an activity
broker, parallel scheduler, job submission component,
metrics, an information provider, and acceptance and
distribution policies.

Parallel jobs are submitted to computational sites via a
local submission component or forwarded from an external
site. Locally submitted jobs may be processed or delegated to
other sites. The delegated job acceptance or denial is
determined by local acceptance policies.

Scheduler

Decision maker
Acceptance

policy
Distribution

policy

Strategy

Workload submission

Information provider

Description Metrics

Description

Life cycle

Provenance

J
o

b
 m

o
d

e
l

Metrics

A
W

R
T

/U

U
R...

XML

CSV

DBM

P
e

rs
is

ta
n

c
e

RUS

Event management Run time environment

G
ri
d

S
it
e

C
o

m
m

o
n

s
F

u
n

d
a

ti
o

n
Composite job scheduler Independent job scheduler

Centralized Grid scheduler

In this work, we extend tGSF scheduling capabilities by

adding workflow and parallel job scheduling support at the
Grid layer. A centralized grid scheduler is responsible for
orchestrating job placement to computational sites in the
Grid. Two levels of scheduling are distinguished, namely,
site scheduling and grid scheduling (see Fig. 2). The Grid
scheduler queues parallel jobs and jobs with broken
precedence constraints. It also buffers workflow control and
state information used during workflow execution.

III. THE SCHEDULING PROBLEM

We address an online scheduling problem, in which 𝑛
jobs 𝐽1, 𝐽2,⋯ , 𝐽𝑛 must be scheduled to 𝑚 parallel machines
𝑁1,𝑁2 ,⋯ ,𝑁𝑚 referred to as computational sites. 𝑚𝑖 denotes

Figure 1. tGSF architecture. Workflow scheduling support is provided at the

Grid layer by means of the composite and independent job schedulers.

the number of identical processors of machine 𝑁𝑖 . Machines
are ordered in ascending order of their sizes, so that 𝑚1 ≤
𝑚1 ≤ ⋯ ≤ 𝑚𝑚 .

Job submission

system

Grid scheduler

(centralized)

Local

scheduler

Participating

machines

Buffering

Composite jobs

Independent jobs

Independent jobs

Grid level scheduling

Site level scheduling

Local

submission

system

Figure 2. tGSF new two layer scheduling architecture.

Job 𝐽𝑗 can be a parallel rigid or composite workflow job.

Each parallel job 𝐽𝑗 is described by the 4-tuple

 𝑟𝑗 , 𝑠𝑖𝑧𝑒𝑗 , 𝑝𝑗 , 𝑝 𝑗 , with release time 𝑟𝑗 ≥ 0, size or degree of

parallelism 1 ≤ 𝑠𝑖𝑧𝑒𝑗 ≤ 𝑚𝑚 , execution time 𝑝𝑗 , and user

runtime estimate 𝑝 𝑗 .
Each composite job 𝐽𝑗 is represented by a directed acyclic

graph 𝐷𝐴𝐺𝑗 = 𝑉𝑗 ,𝐸𝑗 , were 𝑉𝑗 = 𝐽𝑘 , 𝑘 = 1⋯𝑣 is the set

of rigid jobs with 𝑉𝑗 = 𝑣, 𝐸𝑗 = 𝐽𝑘 , 𝐽𝑙 | 𝐽𝑘 , 𝐽𝑙 ∈ 𝑉𝑗 is the

set of precedence constraints. It is described by the 4-tuple

 𝑟𝑗 ,𝐷𝐴𝐺𝑗 , 𝑝𝑗 , 𝑝 𝑗 its release time 𝑟𝑗 ≥ 0, 𝑟𝑗 = 𝑚𝑖𝑛 𝐽𝑒𝑛𝑡𝑟𝑦 ,
𝐽𝑒𝑛𝑡𝑟𝑦 ∈ 𝑉𝑗 jobs with no predecessors, its execution time

𝑝𝑗 = 𝑝𝑘
𝑣
𝑘=1 , and estimated processing time 𝑝 𝑗 = 𝑝 𝑘

𝑣
𝑘=1 .

Jobs in 𝑉𝑗 are scheduled to different sites, co-allocation of a

rigid jobs onto separate sites is not allowed. Hereafter, rigid
and composite jobs are referred to as jobs.

IV. GRID SCHEDULING SUPPORT

A. General Aspects of Workflow Scheduling

Site level schedulers in Teikoku receive jobs that arrive
over time, and schedule them without knowledge of the
future, so that there are no guarantees of producing optimal
schedules. Therefore, tGSF falls under the online scheduling
model.

Based on the fact that numerous deterministic workflow
scheduling strategies bare common functionality, we have
procured the design of a loosely coupled workflow
scheduling architecture. Static workflow –DAG- scheduling
strategies generally employ three phases [11]:

 Labeling phase prioritizes each job in the workflow.
Priorities are later used to establish the order in
which jobs are to be scheduled. Classical labeling
strategies include: upper rank, downward rank, and
as late as possible.

 Job selection phase. Jobs are selected based on the
objective of the selection criteria, higher or lower

priority jobs are selected first and passed to the
assignment phase.

 Job assignment phase. An optimization function is
used to determine the best location for job
placement. Typical optimization functions include:
earliest start time and absolute latest start time.

These three phases have been rigorously used in many

designs of static and dynamic DAG scheduling strategies
[11-14]. In this work, prioritization, selection, and
assignment phases are defined in an interface. Furthermore,
phases are implemented as policies. For instance,
prioritization phase policies can be downward rank, upper
rank, as late as possible, or other. Such design, enables
exploring different scheduling settings. To this writing, we
have extended tGSF to support two workflow scheduling
strategies, namely HEFT (Heterogeneous Earliest Finishing
Time) and CPOP (Critical Path on Processor) [11].
Components that enable workflow support and their
interactions are subject of the following section.

B. Components for Workflow Scheduling

The primary goals in the design of the proposed
workflow scheduling environment are to provide an
extensible, highly cohesive, and loosely coupled
infrastructure. Extensibility is supported by using wherever
possible interfaces or abstract classes that provides
specializing functionality, such as scheduling policies,
optimization functions and metrics, schedulers, and job
administration brokers. High cohesion and loosely coupling
are partially attained by making components functionality
self contained, and providing mechanisms for processing
shared data. This objective is achieved by abstracting each
job’s control and state data into independent Job Control
Blocks (JCB). Such a design principle is commonly used to
model process and threads in modern operating systems [15,
16].

Workflow scheduling support is based on the scheduling
phases described in the previous section. It is an aggregation
of specialized schedulers, strategies, information providers,
and brokers that orchestrate scheduling of workflows. The
following components enable workflow scheduling support:

 Abstract Grid Broker: The Abstract Grid Broker
(AGB) receives jobs from a grid submission
component, and forwards them to a parallel job
scheduler or to a workflow scheduler. Several Grid
broker implementations are possible, for instance, a
distributed, hierarchical, or centralized. Differences
between Grid broker implementations may lie in the
visibility of resources, interconnection topology,
among other factors. A Centralized Grid Broker
(CGB) with complete view of all computational sites
in the Grid is designed.

 Abstract Scheduler: The Abstract Scheduler (AS)
manages jobs by applying a parallel job or workflow
scheduling scheme. Two concrete schedulers are
distinguished: Parallel Job Scheduler (PJS) and
Workflow Scheduler (WS). WS processes workflow
jobs by ranking independent jobs, ordering them
based on a selection criterion, and determining job
destinations. The preceding process is repeated as
precedence constraints are broken.

 Strategy: A strategy is an extensible interface used
to define job assignment policies, for example,
random, minimum parallel load, minimum lower
bound, etc. Polices are discussed later in section
IV.F.

 Information system: The Information system (IS)
provides a query interface for status
information of compute sites and jobs execution time
estimates. Assignment policies may be used by some
strategies to gather information for decision making
purposes. Section IV.E describes the information
system design.

 Dispatcher. The dispatcher forwards jobs to the
destination site determined by a strategy.

The sequence of events performed during the

collaboration of workflow scheduling components may not
be unique, as workflow scheduling strategies may omit some
steps of the scheduling scheme. Others may reevaluate
values as the scheduling process progresses. This is the case
of dynamic critical path workflow scheduling strategies. In
spite of the differences in sequencing of events, we illustrate
a general set of events for scheduling workflows in Figure 3
and describe them next.

1. The scheduling process is initiated, when jobs are

submitted –offered- to the CGB via a grid

submission component. Sessions are used to send

one or more jobs as a single request. Session

duration is bounded, if session torn down occurs

before consuming all session jobs, the CGB does not

schedule them. Note that the CGB is a concrete

implementation of AGB.

2. Upon reception of a workflow, jobs are pushed into

the Composite Job Queue (CJQ). The CGB forwards

the job to the PJS or the WS based on the job type.

3. The WS manages the job by creating or updating a

workflow JCB. Job management includes setting the

workflow state, internal workflow jobs states, and

storing accounting data. Afterward, a labeling policy

is used to rank all workflow jobs. A selection policy

criterion is used to select a set of independent jobs

ordered according to an ordering policy.

4. Jobs in the independent job set are processed based

on their relative ordering. The WS schedules each

job by calling an Assignment Strategy (AS) to

determine which site will host a given job. Note that

one or more assignment strategy can be used.

5. During the execution of the strategy the Grid

Information Broker (GIB) polls job execution time

estimates (i.e. earliest start time, earliest finishing

time, etc.) or site status information (i.e. number of

waiting jobs, total running jobs, number of

resources, etc.). Ultimately, the strategy selects a

destination site and adds localization information to

the JCB.

6. As job assignment is determined, the WS pushes

jobs into the Independent Job Queue (IJQ), and

creates a Job Queued Event (JQE) for the job.

7. On the occurrence of a JQE event, the PJS retrieves

–pop- localization information from the IJQ and

calls the dispatcher.

8. The dispatcher adds provenance information to the
job and dispatches it to its destination site.

In tGSF, the policies and strategies referenced in steps 4

to 6 are defined in an ASCII text based configuration file.
They are dynamically loaded during simulation runtime.

C. Parallel Job Scheduling

In order to define a suitable scheduling methodology, the
following model restrictions are considered: A
computational site schedule is only accessible to its local

Grid Information Broker
Abstract Grid Broker :

CGB

Grid level scheduler

5 : poll(job):

*[for each site] /

query(job, site) : resource data

Site Information Broker

Abstract scheduler :

PJS or WS
Strategy

3 : manageJob(job) :

4 : schedule(job) : JCB

1: offers(session) :

Dispatcher

Independent job queue

6: push(job) : 8: dispatch(job,destSite)

7: pop() : job

Composite job queue

2 : push(job)

Figure 3. Parallel and composite job tGSF extended Grid scheduling support.

scheduler. The grid scheduler does not have access to the
computational site schedules, it can only request state data or
job execution time estimates. Estimates do not guarantee
resource availability, nor that reservations performed.

The parallel job scheduling is thus straightforward. Given
a parallel or independent job an assignment policy is used to
evaluate the candidacy of computational sites. First, a subset
of admissible sites is built by selecting computational sites
that can fulfill a given job resource requirements. The
candidate site is selected according to the optimization
criterion of the assignment strategy. Assignment strategies
are discussed in Section IV.F. Once the target site is
determined, the job is sent to the computational site.

D. The Workflow Model

The original version of tGSF models parallel jobs using
the Standard Workload Format (SWF) with chain support
[17]. In this work, we extend tGSF abstract job model so that
workflows can be scheduled at the Grid layer. We added four
new attributes to the existing format, namely: composite job
ID, composite job type, vector of successor IDs, and a vector
of predecessor IDs. Hereon, we use the term workflow or
composite job interchangeably to refer to precedence
constraint jobs.

Composite jobs are modeled by Directed Acyclic Graphs
(DAG). It is composed by a set of SWF jobs and a set of
precedence constrains stored in a hypergraph data type [18].
Such a data type can be used to model jobs with directed,
undirected, cyclic, forest, sparse, or other graph properties.

E. Providing Information to Strategies

Scheduling strategies may require accounting data or job
execution estimates for decision-making purposes. In

Teikoku, a Grid information component provides services
for consulting resource availability, state, and architectural
characteristics. Its design is based on the Grid laboratory
Uniform Environment (GLUE) schema [19].

Teikoku’s Grid information component is composed by a
Grid Information Broker (GIB) and the Site Information
Broker (SIB). The GIB provides services that enable
sampling data from one or more SIB’s, whereas SIB
retrieves information from local resources.

State and accounting data are stored in a Compute Site
Information data structure. tGSF version 0.1 only supports
CSI, all do the architecture is extensible so that other
resources can be included. State data can accumulate at SIB
brokers, therefore becoming stale, or it can be sampled with
request. Stale state data is refreshed at user given discrete
time frames.

CSI state data hold capacity bounds and accounting
information. The first one retrieves quotas such as maximum
number of jobs, running jobs, and waiting jobs. Accounting
data provide load condition information such as total number
of executed jobs, running jobs, waiting jobs, etc.

A job execution estimate gives a prediction assuming a
job is placed at a given computational site. SIB provided job
execution estimates include earliest start time and earliest
finishing time.

The static diagram of the grid information component is
illustrated in Fig. 4. Concrete implementations for the site
information broker and grid information broker are given by
Impl suffix named classes.

F. Parallel Job Allocation Strategies

The parallel job Grid scheduling strategies proposed in
[20] have been implemented. Tchernykh et al. classified job

TABLE I

RIGID PARALLEL JOB ALLOCATION STRATEGIES

Level Available information Allocation criteria Heuristic

0 The number of machines and their size

are known

Rand, selects a machine randomly

1 In addition to information in level 0, the

number of jobs pending execution at

each site is known

Min_lp, Selects the site with minimum processor load

𝑚𝑖𝑛
𝑛𝑖
𝑚𝑖

2 In addition to information in level 1, the

degree of parallelism of each task is

used

Min_pl, selects the site with minimum parallel load.

Where 𝑔 𝐽𝑘 = 𝑀𝑖 denotes that job 𝐽𝑘was assigned to

machine 𝑀𝑖
𝑚𝑖𝑛

𝑠𝑖𝑧𝑒𝑘
𝑚𝑖

𝑔 𝐽𝑘 =𝑀𝑖

3 In addition to information in level 2,
clairvoyant scheduling is performed by

using job estimated execution times.

Min_lb, selects the site with minimum work per
processor

𝑚𝑖𝑛

𝑠𝑖𝑧𝑒𝑘 ∙ 𝑝 𝑘
𝑚𝑖

𝑔 𝐽𝑘 =𝑀𝑖

4 In addition to information in level 3,all

site scheduled are known

Min_ct, selects the site with minimum completion

time. Where 𝐶𝑚𝑎𝑥
𝑖 = 𝑚𝑎𝑥𝑔 𝐽𝑘 =𝑀𝑖

 𝐶𝑘
𝑖 , and 𝐶𝑘

𝑖 is the

finishing time of job 𝐽𝑘

𝑚𝑖𝑛 𝐶𝑚𝑎𝑥
𝑖

 Min_wct, selects the site with minimum weighted
completion time 𝑚𝑖𝑛 𝑠𝑖𝑧𝑒𝑘 ∙ 𝐶𝑘

𝑖

𝑔 𝐽𝑘 =𝑀𝑖

 Min_wt, selects the site with minimum job waiting

time. If 𝑛𝑖 is zero 𝑛𝑖 is set to 1 𝑚𝑖𝑛
𝐶𝑘
𝑖 − 𝑟𝑘 − 𝑝 𝑘

𝑛𝑖
𝑔 𝐽𝑘 =𝑀𝑖

 Min_wwt, selects the site with minimum weighted
completion time. The weight is the size of the job 𝑚𝑖𝑛

 𝐶𝑘
𝑖 − 𝑟𝑘 − 𝑝 𝑘 ∗ 𝑠𝑖𝑧𝑒𝑘

𝑛𝑖
𝑔 𝐽𝑘 =𝑀𝑖

 Min_u, selects the site with minimum overall

utilization. Were 𝑊𝑡𝑜𝑡𝑎𝑙
𝑖 = 𝑠𝑖𝑧𝑒𝑘 ∙𝑔 𝐽𝑘 =𝑀𝑖

𝑝𝑘 is the

total work performed by machine 𝑀𝑖

𝑚𝑖𝑛
𝑊𝑡𝑜𝑡𝑎𝑙

𝑖

𝐶𝑚𝑎𝑥
𝑖 ∙ 𝑚𝑖

 Min st, selects the site with minimum job start time 𝑚𝑖𝑛 𝐶𝑗
𝑖 − 𝑟𝑗

allocation strategies based on the amount of information
required for decision making. Four levels are distinguished,
strategies of level 1, 2, and 3 use site status information,
while strategies of level 4 require job execution time
estimates. Table I lists parallel job allocation strategies,
implemented in the new Grid scheduling framework.

Level 1 throughout level 3 strategies, use the GIB to
query site status information. Status information is used by
assignment strategies to select a target computational site
that will host a given job. Level 4 strategies use the GIB to
poll job completion times 𝐶𝑗 . Each computational site 𝑖 that

can host a given job 𝑗 forwards 𝐶𝑗
𝑖 to the GIB.

Providing job completion time estimates is expensive, for
it may require creating a schedule at each queried site.
Furthermore, estimates do not guarantee that computational
resources are reserved, nor that the validity of estimates will
hold once jobs has been allocated.

G. Performance Metrics

Performance metrics are used to evaluate the
performance of the Grid. Performance evaluation is
conducted after the termination of an event, normally, after a
job completion event or workflow completion event. The
performance may also be evaluated during a pre-processing,
processing, and post-processing phase. tGSF ver. 0.1
provides support for the evaluation of the average response
time, average slowdown, average wait time, average
weighted response time, average weighted slowdown, and
average weighted wait time at the site layer.

Current parallel job scheduling objectives are
summarized in Table II. Parallel job scheduling objectives
can be found in classical scheduling theory sources [21,22],
workflow scheduling objectives speedup and scheduling
length ratio have been used in [11,13]. Workflow scheduling
objectives such as waiting time, slowdown, turnaround time,

and their weighted and bounded versions are proposed in this
work.

Performance metrics are classified as user centric and
system centric. Mean waiting time is a system centric metric,
the shorter waiting time the faster job execution begins. A
parallel job 𝑗 can be weighted by its processing time 𝑝𝑗 , job

size 𝑠𝑖𝑧𝑒𝑗 , or resource consumption 𝑝𝑗 . 𝑠𝑖𝑧𝑒𝑗 . Following

Schwiegelshohn et al. [23] this ensures that neither splitting
nor combination of jobs can influence the performance
objective. Hence, job 𝑗 weight is given by 𝑤𝑒𝑖𝑔ℎ𝑡𝑗 =

 𝑝𝑗 , 𝑠𝑖𝑧𝑒𝑗 , 𝑝𝑗 𝑠𝑖𝑧𝑒𝑗 . A composite job is weighted by its

processing time 𝑝𝑘 = 𝑝𝑗𝑇𝑗∈𝑉𝑘
, job size 𝑠𝑖𝑧𝑒𝑘 =

 𝑠𝑖𝑧𝑒𝑗𝑇𝑗∈𝑉𝑘
, or resource consumption 𝑝𝑘𝑠𝑖𝑧𝑒𝑘 .

Composite job makespan is 𝐶𝑃𝑚𝑖𝑛 + 𝐴𝑆𝑇𝑘 . The
Absolute Start Time (ASTk) of a composite job 𝑘 is the
minimum start time of job 𝑘 on all computational sites. The
critical path 𝐶𝑃𝑚𝑖𝑛 is the sum of the minimum processing
costs of jobs on the critical path.

V. THE SIMULATION ENVIRONMENT

In tGSF version 0.1, the simulation environment is setup
by defining a set of sites and their corresponding properties
in a Java properties file. Properties are used to define: the
number of available resources, session life time, queuing
policy, site information broker caching life time, and a set of
performance objectives. Properties are set by initiating tGSF
system constants, such as: numberOfProvidedResources,
informationBroker.class, etc. System constants can be found
in tGSF package API documentation [8].

A site can be configured to function as computational site
or as a centralized grid scheduler, this is performed by
initiating the activityBroker.class or the
gridActivityBroker.class properties. Only one grid activity
broker can be set, since the implementation of the Grid

TABLE II
GRID LAYER PARALLEL JOB AND WORKFLOW PERFORMANCE OBJECTIVES

Level Metric Parallel Workflow

1 Make-span 𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥 𝑐𝑗 | 𝑇𝑗 ∈ 𝑇 𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥 𝑐𝑗 | 𝑇𝑗 ∈ 𝑉𝑘 , per workflow

2 Waiting time 𝑡𝑤𝑗 = 𝑐𝑗 − 𝑝𝑗 − 𝑟𝑗

𝑡𝑤𝑘 = max𝑇𝑗∈𝑉𝑘 𝑐𝑗 − 𝑝𝑗
 𝑉𝑘

𝑗=1 − min𝑇𝑗∈𝑉𝑘
𝑟𝑗 , per workflow

3 Average waiting time
𝑡𝑤 =

1

𝑛
 𝑡𝑤𝑗

𝑛

𝑗=1

𝑡𝑤 =

1

𝑤
 𝑡𝑤𝑘
𝑤
𝑘=1 , where 𝑤 is the total number of composite

jobs

4 Average weighted

waiting time 𝑡𝑤 =
 𝑤𝑒𝑖𝑔ℎ𝑡𝑗 ∙
𝑛
𝑗=1 𝑡𝑤𝑗
 𝑤𝑒𝑖𝑔ℎ𝑡𝑗
𝑛
𝑗=1

𝑡𝑤 =

 𝑤𝑒𝑖𝑔ℎ𝑡𝑘 ∙
𝑤
𝑘=1 𝑡𝑤𝑘

 𝑤𝑒𝑖𝑔ℎ𝑡𝑘
𝑤
𝑘=1

5 Slowdown
𝑆𝐷 =

1

𝑛

𝑝𝑗 + 𝑡𝑤𝑗

𝑝𝑗

𝑛

𝑗=1

 𝑆𝐷 =
1

𝑤
 𝑆𝐷𝑘
𝑤
𝑘=1 were 𝑆𝐷𝑘 =

1

 𝑉𝑘

𝑝𝑗+𝑡𝑤 𝑗

𝑝𝑗
𝑇𝑗∈𝑉𝑘

6 Bounded slowdown
𝑆𝐷𝑏 =

1

𝑛

𝑚𝑎𝑥 10, 𝑝𝑗 + 𝑡𝑤𝑗

𝑚𝑎𝑥 10,𝑝𝑗

𝑛

𝑗=1

 𝑆𝐷𝑏 =
1

𝑤
 𝑆𝐷𝑘
𝑤
𝑘=1 were 𝑆𝐷𝑘 =

1

 𝑉𝑘

𝑚𝑎𝑥 10,𝑝𝑗 +𝑡𝑤 𝑗

𝑚𝑎𝑥 10,𝑝𝑗

 𝑉𝑘

𝑗=1

7 Turnaround time
𝑇𝐴 =

1

𝑛
 𝑐𝑗 − 𝑟𝑗

𝑛

𝑗=1

𝑡𝑟𝑘 = 𝑚𝑎𝑥 𝑐𝑗 −𝑚𝑖𝑛 𝑟𝑖 | 𝑇𝑗 ,𝑇𝑖 ∈ 𝑉𝑘

𝑇𝐴 =
1

𝑤
 𝑡𝑟𝑘

𝑤

𝑘=1

8 Weighted turnaround

time 𝑇𝐴𝑤𝑒𝑖𝑔 ℎ𝑡 =
1

𝑛
 𝑐𝑗 − 𝑟𝑗

𝑛

𝑗=1

∙ 𝑤𝑒𝑖𝑔ℎ𝑡𝑗 𝑇𝐴𝑤 =
1

𝑤
 𝑡𝑟𝑘 ∙ 𝑤𝑒𝑖𝑔ℎ𝑡𝑘

𝑤

𝑘=1

9 Speedup
𝑆𝑝𝑒𝑒𝑑𝑈𝑝𝑘 =

 𝑝𝑗𝑇𝑗∈𝑉𝑘

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛𝑘

10 Schedule length ration Selects the site with minimum start time
𝑆𝑅𝐿𝑘 =

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛𝑘
 𝑝𝑗𝑇𝑗∈𝑉𝑘

activity broker is centralized.
A single computational site and centralized Grid

scheduler site Java properties file configuration excerpt is
illustrated in the following pseudo code. Only key
configuration features are presented. Documentation of tGSF
version 0.1 Java properties can be found in [8].

Site 1 runtime information and properties
Runtime information

runtime.workloadSource.id = <id1>

runtime.< id1>.associatedSite.ref = site1
runtime.< id1>.url = file:/C:/<workload file>.swf

Site 1 properties

sites.<id1>.numberOfProvidedResources = 1
sites.< id1>.submissioncomponent.sessionlifetime = 100

Activity Broker

sites.<id1>.gridActivityBroker.class = ... CentralizedGridActivityBroker

Grid information server

sites.<id1>.gridInformationBroker.class =... GridInformationBrokerImpl

Composite job strategy

sites.< id1>.grid.composite.strategy.class = ... HEFT

Rigid job strategy

sites.<id1>.grid.rigid.strategy.class = …Rand

Optimization function

sites.< id1>.registeredMetric.ref = bounded_slowdown

#Site 2 runtime information and properties
Runtime information

runtime.workloadSource.id = <id2>

runtime.< id2>.associatedSite.ref = site2

runtime. <id2>.url = file:/C:/<workload file>.swf

Site2 properties

sites.<id2>.numberOfProvidedResources = 100

sites.<id2>.localsubmissioncomponent.sessionlifetime = 100

Activity Broker

sites.<id-2>.activitybroker.class = …StandardActivityBroker

Information broker

sites.<id2>.informationBroker.class = … SiteInformationBrokerImpl

sites.<id2>.informationBroker.refreshRate = -1

…

Acceptance policy

sites.<id2>.activitybroker.acceptancepolicy.class = …

 StandardAcceptancePolicy

Scheduler and scheduling policy

sites.<id2>.scheduler.class =…ParallelMachineScheduler

sites.<id2>.scheduler.localstrategy.class = …FCFSStrategy

Queue policy

sites.<id2>.scheduler.localqueuecomparator.class = …

NaturalOrderComparator
sites.<id2>.scheduler.localqueuecomparator.ordering = ascending

Metrics

sites.<id2>.registeredMetric.ref = art

Two brokers are defined, site 1 role is set as a grid

activity broker (CentralizedGridActivityBroker) and site 2
role is set as a computational site (StandardActivityBroker).
Workloads are associated to each site by setting the url
property, for example, site 1 workload is runtime.site1.url =
file:/C:/gridWorkload.swf. The number of processors of a
site is defined by the property numberOfProvidedResources.
Site 2 hosts 100 processors.

Recall that the information system is used to provide
strategies state or job execution estimates. Site information
broker refresh rate informationBroker.refreshRate. A value
of -1 disables caching state data, it ensures that sampling is

always performed. State data become stale if they are
buffered more than a predefine amount of time set by the
informationBroker.refreshRate to a positive integer value
greater than one (milliseconds). A value of 600,000 indicates
that information queries within a 10 minute time frame.

The centralized Grid scheduler scheduling policies are set
by initiating the grid.composite.strategy property to HEFT,
for workflow scheduling support, and the grid.rigid.strategy
property to Rand, for parallel job scheduling support.

Computational sites may perform load balancing of
locally submitted jobs, by setting the transfer, location, and
distribution policies properties. This feature may be used to
create dynamicity at site level scheduling layer, or may be
disable so that once a job is assigned to a computational site,
it cannot be delegated to others sites.

VI. RELATED WORK

OPTORSIM is a Java based simulator developed as part
of the European DataGrid project. It aims to optimize the
scheduling process for highly intensive computation and data
Grids. OPTORSIM scheduling strategies include: random;
access control which optimizes job allocation based on the
time needed to access all files required by the job; queue
size; and queue access cost which considers the combine
access cost of all jobs in the queue. Replication optimization
criterias include: no replication; replication based on the
LRU (Least Recently Used) and LFU (Least Frequently
Used) algorithms; and an auction based strategy that use the
binomial economic model and the Zipf economic model for
negotiating file replication. OPTORSIM provides time-based
and event-based simulations [27].

Xavantes is a distributed process and workflow execution
context based on Java-RMI. It provides a programming
model based on BEPL (Business Process Execution
Language) used to define process elements and precedence
constraints. Two workflow scheduling strategies are
supported: static PHC (Path Clustering Heuristic) and
dynamic PCH. Computation and communication estimates
are used [13].

VII. CONCLUSIONS AND FUTURE WORK

This work presented tGSF extension for workflow and
parallel job Grid scheduling support, provided via a second
layer of scheduler with parallel job strategies, workflow
strategies, and metric extensibility. Workflow scheduling
support is loosely coupled, so that job labeling, selection, and
assignment strategies are processed independently. It allows
the study of different workflow scheduling settings. To
promote the simulator utilization in the scientific community,
an example of the simulation setup was presented.

This work is an on process work. The Teikoku research
community entails many research branches. Our research
branch dealt with the study of workflow and parallel job
scheduling strategies in an execution context that
experiences resource unavailability. In future work, we plan
to develop strategies to evaluate resource availability
conditions in the Grid, and use such information to schedule
workflows predictably.

ACKNOWLEDGMENT

We thank IRF and ITMC groups in Dortmund, Germany
for their hospitality, comments, and support resolving
theoretical and technical issues. We gratefully acknowledge
the assistance of Alexander Fölling.

This work was supported in part by the DAAD -
Deutscher Akademischer Austausch Dienst under Grant
Section 414, Code number A0774928 and A0903177, and
the Research and Postgraduate Department of the
Autonomous University of Baja California (UABC).

REFERENCES

[1] Fox, G. C. and Gannon, D. 2006. Special Issue: Workflow in Grid

Systems: Editorials. Concurr. Comput. : Pract. Exper. 18, 10 (Aug.

2006), 1009-1019.
[2] Guelfi, N. and Mammar, A. 2006. A formal framework to generate

XPDL specifications from UML activity diagrams. In Proceedings of

the 2006 ACM Symposium on Applied Computing (Dijon, France,
April 23 - 27, 2006). SAC '06. ACM, New York, NY, 1224-1231.

[3] Ma, R., Wu, Y., Meng, X., Liu, S., and Li Pan 2008. Grid-Enabled

Workflow Management System Based On BPEL. Int. J. High
Perform. Comput. Appl. 22, 3 (Aug. 2008), 238-249.

[4] Deelman, E., Gannon, D., Shields, M., and Taylor, I. 2009.

Workflows and e-Science: An overview of workflow system features
and capabilities. Future Gener. Comput. Syst. 25, 5 (May. 2009), 528-

540.

[5] Deelman, E., Singh, G., Su, M., Blythe, J., Gil, Y., Kesselman, C.,
Mehta, G., Vahi, K., Berriman, G. B., Good, J., Laity, A., Jacob, J.

C., and Katz, D. S. 2005. Pegasus: A framework for mapping

complex scientific workflows onto distributed systems. Sci. Program.
13, 3 (Jul. 2005), 219-237.

[6] Bharathi, S. and Chervenak, A. 2009. Scheduling data-intensive

workflows on storage constrained resources. In Proceedings of the 4th
Workshop on Workflows in Support of Large-Scale Science

(Portland, Oregon, November 16 - 16, 2009). WORKS '09. ACM,

New York, NY, 1-10.
[7] Stratan, C., Iosup, A., and Epema, D. H. 2008. A performance study

of grid workflow engines. In Proceedings of the 2008 9th IEEE/ACM
international Conference on Grid Computing - Volume 00

(September 29 - October 01, 2008). International Conference on Grid

Computing. IEEE Computer Society, Washington, DC, 25-32
[8] http://www.coregrid.net/, December 2009.

[9] C. Grimme, J. Lepping, A. Papaspyrou, P. Wieder, R. Yahyapour, A.

Oleksiak, O. W¨aldrich, and W. Ziegler. Towards a standards-based
Grid Scheduling Architecture. CoreGRID Technical Report TR-0123,

Institute on Resource Management and Scheduling, December 2007

[10] Christian Grimme, Joachim Lepping, Alexander Papaspyrou, and
Alexander Fölling. http://forge.it.irf.tu-

dortmund.de/trac/teikoku/wiki/TeikokuArchitecture#Architecture,

December 2009.
[11] Topcuouglu, H., Hariri, S., and Wu, M. 2002. Performance-Effective

and Low-Complexity Task Scheduling for Heterogeneous

Computing. IEEE Trans. Parallel Distrib. Syst. 13, 3 (Mar. 2002),
260-274

[12] Kwok, Y. and Ahmad, I. 1999. Static scheduling algorithms for

allocating directed task graphs to multiprocessors. ACM Comput.
Surv. 31, 4 (Dec. 1999), 406-471

[13] Bittencourt, L. F. and Madeira, E. R. 2006. A dynamic approach for

scheduling dependent tasks on the Xavantes grid middleware. In
Proceedings of the 4th international Workshop on Middleware For

Grid Computing (Melbourne, Australia, November 27 - December

01, 2006). MCG '06, vol. 194. ACM, New York, NY, 10.
[14] Kwok, Y. and Ahmad, I. 1996. Dynamic Critical-Path Scheduling:

An Effective Technique for Allocating Task Graphs to

Multiprocessors. IEEE Trans. Parallel Distrib. Syst. 7, 5 (May. 1996),
506-521.

[15] Silberschatz, A., Peterson, J. L., and Galvin, P. B. 1991 Operating

System Concepts (3rd Ed.). Addison-Wesley Longman Publishing
Co., Inc.

[16] Tanenbaum, A. 2007 Modern Operating Systems. 3rd. Prentice Hall

Press.
[17] Steve J. Chapin, Walfredo Cirne, Dror G. Feitelson, James Patton

Jones, Scott T. Leutenegger, Uwe Schwiegelshohn, Warren Smith,

and David Talby, ``Benchmarks and Standards for the Evaluation of
Parallel Job Schedulers''. In Job Scheduling Strategies for Parallel

Processing, D. G. Feitelson and L. Rudolph (Eds.), Springer-Verlag,

1999, Lect. Notes Comput. Sci. vol. 1659, pp. 66-89

[18] Joshua O’Madadhain, Danyel Fisher, Tom Nelson. JUNG, Java

Universal Network/Graph Framework, http://jung.sourceforge.net/,

December 2009.
[19] Balazs Konya, Laurence Field, Sergio Andreozzi. Glue working

group, http://forge.ogf.org/sf/projects/glue-wg, December 2009

[20] A. Tchernykh, U. Schwiegelsohn, R. Yahyapour, N. Kuzjurin
"Online Hierarchical Job Scheduling in Grids", CoreGRID

Symposium in conjunction with EuroPar 2008 Conference, Las
Palmas de Gran Canaria (Spain), August 26th-29th

[21] Michael L. Pinedo. 2008. Scheduling Theory, Algorithms, and

Systems (3rd Ed.) Springer. Pp. 13-22.
[22] Joseph Y-T. Leung. 2004. Handbook of Scheduling, Algorithms,

Models, and Performance Analysis. Chapmann & Hall/CRC. Pp. 1.1-

1.8
[23] Grimme, C., Lepping, J., and Papaspyrou, A. 2008. Discovering

performance bounds for grid scheduling by using evolutionary

multiobjective optimization. In Proceedings of the 10th Annual
Conference on Genetic and Evolutionary Computation (Atlanta, GA,

USA, July 12 - 16, 2008). M. Keijzer, Ed. GECCO '08. ACM, New

York, NY, 1491-1498.
[24] Casati, F., Ceri, S., Paraboschi, S., and Pozzi, G. 1999. Specification

and implementation of exceptions in workflow management systems.

ACM Trans. Database Syst. 24, 3 (Sep. 1999), 405-451
[25] Han, M., Thiery, T., and Song, X. 2006. Managing exceptions in the

medical workflow systems. In Proceedings of the 28th international

Conference on Software Engineering (Shanghai, China, May 20 - 28,
2006). ICSE '06. ACM, New York, NY, 741-750

[26] Mourão, H. and Antunes, P. 2007. Supporting effective unexpected

exceptions handling in workflow management systems. In
Proceedings of the 2007 ACM Symposium on Applied Computing

(Seoul, Korea, March 11 - 15, 2007). SAC '07. ACM, New York, NY,

1242-1249
[27] Cameron, D. G., Carvajal-Schiaffino, R., Millar, A. P., Nicholson, C.,

Stockinger, K., and Zini, F. 2003. Evaluating Scheduling and Replica

Optimisation Strategies in OptorSim. In Proceedings of the 4th
international Workshop on Grid Computing (November 17 - 17,

2003). International Conference on Grid Computing. IEEE Computer

Society, Washington, DC, 52

